New Hampshire Volunteer Lake Assessment Program

2003 Biennial Report for Tarleton Lake Piermont

NHDES Water Division Watershed Management Bureau 29 Hazen Drive Concord, NH 03301

Observations & Recommendations

After reviewing data collected from **TARLETON LAKE**, **PIERMONT**, the program coordinators have made the following observations and recommendations:

We would like to encourage your monitoring group to participate in the DES Weed Watchers program, a volunteer program dedicated to monitoring the lakes and ponds for the presence of exotic weeds. This program only involves a small amount of time during the summer months. Volunteers survey their waterbody once a month from June through September. To survey, volunteers slowly boat, or even snorkel, around the perimeter of the waterbody and any islands it may contain. Using the materials provided in the Weed Watchers Kit, volunteers look for any species that are of suspicion. After a trip or two around the waterbody, volunteers will have a good knowledge of its plant community and will immediately notice even the most subtle changes. If a suspicious plant is found, the volunteers will send a specimen to DES for identification. If the plant specimen is an exotic, a biologist will visit the site to determine the extent of the problem and to formulate a plan of action to control the nuisance infestation.

If you would like to help protect your lake or pond from exotic plants, contact Amy Smagula, Exotic Species Program Coordinator, at 271-2248 or visit the Weed Watchers web page at www.des.state.nh.us/wmb/exoticspecies/survey.htm.

FIGURE INTERPRETATION

Figure 1 and Table 1: The graphs in Figure 1 (Appendix A) show the historical and current year chlorophyll-a concentration in the water column. Table 1 (Appendix B) lists the maximum, minimum, and mean concentration for each sampling season that the lake has been monitored through the program.

Chlorophyll-a, a pigment naturally found in plants, is an indicator of the algal abundance. Because algae are usually microscopic plants that contain chlorophyll-a, and are naturally found in lake ecosystems, the chlorophyll-a concentration measured in the water gives an estimation of the algal concentration or lake productivity. The mean (average) summer chlorophyll-a concentration for New Hampshire's lakes and ponds is 7.02 mg/m³.

The current year data (the top graph) show that the chlorophyll-a concentration *remained stable* from June to July. The chlorophyll-a concentration in June and July was *much less than* the state mean.

The historical data (the bottom graph) show that the 2003 chlorophyll-a mean is *less than* the state mean.

After 10 consecutive years of sample collection, we will be able to conduct a statistical analysis of the historic data to objectively determine if there has been a significant change in the annual mean chlorophyll-a concentration since monitoring began.

While algae are naturally present in all lakes/ponds, an excessive or increasing amount of any type is not welcomed. In freshwater lakes/ponds, phosphorus is the nutrient that algae depend upon for growth. Algal concentrations may increase with an increase in nonpoint sources of phosphorus loading from the watershed, or inlake sources of phosphorus loading (such as phosphorus releases from the sediments). Therefore, it is extremely important for volunteer monitors to continually educate residents about how activities within the watershed can affect phosphorus loading and lake/pond quality.

Figure 2 and Table 3: The graphs in Figure 2 (Appendix A) show historical and current year data for lake transparency. Table 3 (Appendix B) lists the maximum, minimum and mean transparency data for each sampling season that the lake has been monitored through the program.

Volunteer monitors use the Secchi-disk, a 20 cm disk with alternating black and white quadrants, to measure water clarity (how far a person can see into the water). Transparency, a measure of water clarity, can be affected by the amount of algae and sediment from erosion, as well as the natural colors of the water. The mean (average) summer transparency for New Hampshire's lakes and ponds is 3.7 meters.

The current year data (the top graph) show that the in-lake transparency *increased* from June to July. The transparency in June and July was *greater than* the state mean.

The historical data (the bottom graph) show that the 2003 mean transparency is *greater than* the state mean.

As discussed previously, after 10 consecutive years of sample collection, we will be able to conduct a statistical analysis of the historic data to objectively determine if there has been a significant change in the annual mean transparency since monitoring began.

Typically, high intensity rainfall causes erosion of sediments into lakes/ponds and streams, thus decreasing clarity. Efforts should continually be made to stabilize stream banks, lake shorelines, disturbed soils within the watershed, and especially dirt roads located immediately adjacent to the edge of tributaries and the lake. Guides to Best Management Practices designed to reduce, and possibly even eliminate, nonpoint source pollutants, such as sediment loading, are available from DES upon request.

Figure 3 and Table 8: The graphs in Figure 3 (Appendix A) show the amounts of phosphorus in the epilimnion (the upper layer) and the hypolimnion (the lower layer); the inset graphs show current year data. Table 8 (Appendix B) lists the annual maximum, minimum, and median concentration for each deep spot layer and each tributary since the lake joined the program.

Phosphorus is the limiting nutrient for plant and algae growth in New Hampshire's freshwater lakes and ponds. Too much phosphorus in a lake/pond can lead to increases in plant and algal growth over time. The median summer total phosphorus concentration in the epilimnion (upper layer) of New Hampshire's lakes and ponds is 11 ug/L. The median summer phosphorus concentration in the hypolimnion (lower layer) is 14 ug/L.

The current year data for the epilimnion (the top inset graph) show that the phosphorus concentration *increased* from June to July. The phosphorus concentration in June and July was *less than* the state median.

The historical data show that the 2003 mean epilimnetic phosphorus concentration is *less than* the state median.

The current year data for the hypolimnion (the bottom inset graph) show that the phosphorus concentration *increased* from June to July. The phosphorus concentration in June and July was *less than* the state median.

The historical data show that the 2003 mean hypolimnetic phosphorus concentration is *less than* the state median.

One of the most important approaches to reducing phosphorus loading to a waterbody is to continually educate watershed residents about its sources and how excessive amounts can adversely impact the ecology and value of lakes and ponds. Phosphorus sources within a lake or pond's watershed typically include septic systems, animal waste, lawn fertilizer, road and construction erosion, and natural wetlands.

TABLE INTERPRETATION

> Table 2: Phytoplankton

Table 2 (Appendix B) lists the current and historic phytoplankton species observed in the lake. The dominant phytoplankton species observed this year were *Dinobryon* (Golden-Brown) and *Anabaena* (Cyanobacteria).

Phytoplankton populations undergo a natural succession during the growing season (Please refer to the "Biological Monitoring Parameters" section of this report for a more detailed explanation regarding seasonal plankton succession). Diatoms and golden-brown algae are typical in New Hampshire's less productive lakes and ponds.

> Table 2: Cyanobacteria (Blue-green algae)

Small amounts of the cyanobacterium Anabaena were observed in the plankton sample this season. This species, if present in large amounts, can be toxic to livestock, wildlife, pets, and humans.

Cyanobacteria can reach nuisance levels when excessive nutrients and favorable environmental conditions occur. During September of 2003, a few lakes and ponds in the southern portion of the state experienced cyanobacteria blooms. This was likely due to nutrient loading to these waterbodies. As mentioned previously, many weeks during the Spring and Summer of 2003 were rainy, which likely resulted in a large amount of nutrient loading to surface waters.

The presence of cyanobacteria serves as a reminder of the lake's delicate balance. Watershed residents should continue to act proactively to reduce nutrient loading into the lake by eliminating fertilizer use on lawns, keeping the lake shoreline natural, revegetating cleared areas within the watershed, and properly maintaining septic systems and roads.

In addition, residents should also observe the lake in September and October during the time of fall turnover (lake mixing) to document any algal blooms that may occur. Cyanobacteria (blue-green algae) have the ability to regulate their depth in the water column by producing or releasing gas from vesicles. However, occasionally lake mixing can affect their buoyancy and cause them to rise to the surface and bloom. Wind and currents tend to "pile" cyanobacteria into scums that accumulate in one section of the lake. If a fall bloom occurs, please contact the VLAP Coordinator.

> Table 4: pH

Table 4 (Appendix B) presents the in-lake and tributary current year and historical pH data.

pH is measured on a logarithmic scale of 0 (acidic) to 14 (basic). pH is important to the survival and reproduction of fish and other aquatic life. A pH below 5.5 severely limits the growth and reproduction of fish. A pH between 6.5 and 7.0 is ideal for fish. The mean pH value for the epilimnion (upper layer) in New Hampshire's lakes and ponds is **6.5**, which indicates that the surface waters in state are slightly acidic. For a more detailed explanation regarding pH, please refer to the "Chemical Monitoring Parameters" section of this report.

The mean pH at the deep spot this season ranged from **6.01** in the hypolimnion to **6.46** in the epilimnion, which means that the water is **slightly acidic.**

Due to the presence of granite bedrock in the state and the deposition of acid rain, there is not much that can be done to effectively increase lake/pond pH.

> Table 5: Acid Neutralizing Capacity

Table 5 (Appendix B) presents the current year and historic epilimnetic ANC for each year the lake has been monitored through VLAP.

Buffering capacity or ANC describes the ability of a solution to resist changes in pH by neutralizing the acidic input to the lake. The mean ANC value for New Hampshire's lakes and ponds is **6.7 mg/L**, which indicates that many lakes and ponds in the state are "highly sensitive" to acidic inputs. For a more detailed explanation, please refer to the "Chemical Monitoring Parameters" section of this report.

The Acid Neutralizing Capacity (ANC) of the epilimnion (the upper layer) continues to remain **much less than** the state mean of **6.7 mg/L**. Specifically, the lake is classified by DES as **critically sensitive** to acidic inputs (such as acid precipitation).

> Table 6: Conductivity

Table 6 (Appendix B) presents the current and historic conductivity values for tributaries and in-lake data. Conductivity is the numerical expression of the ability of water to carry an electric current. The mean conductivity value for New Hampshire's lakes and ponds is **62.1 uMhos/cm**. For a more detailed explanation, please refer to the "Chemical Monitoring Parameters" section of this report.

The conductivity in the lake is relatively *low* and *less than* the state mean. Typically conductivity levels greater than 100 uMhos/cm indicate the influence of human activities on surface water quality. These activities include septic system leachate, agricultural runoff, iron deposits, and road runoff (which contains road salt during the spring snow melt). The low conductivity level in the lake is an indication of the low amount of pollutants in the watershed. We hope this trend continues!

> Table 8: Total Phosphorus

Table 8 (Appendix B) presents the current year and historic total phosphorus data for in-lake and tributary stations. Phosphorus is the nutrient that limits the algae's ability to grow and reproduce. Please refer to the "Chemical Monitoring Parameters" section of this report for a more detailed explanation.

The total phosphorus concentration at most stations is *very low*. We hope to continue to see these low numbers.

> Table 9 and Table 10: Dissolved Oxygen and Temperature Data

Table 9 (Appendix B) shows the dissolved oxygen/temperature profile(s) for the 2003 sampling season. Table 10 (Appendix B) shows the historical and current year dissolved oxygen concentration in the hypolimnion (lower layer). The presence of dissolved oxygen is vital to fish and amphibians in the water column and also to bottom-dwelling organisms. Please refer to the "Chemical Monitoring Parameters" section of this report for a more detailed explanation.

The dissolved oxygen concentration was **high** at all depths sampled at the deep spot of the lake. It appears that there may have been a malfunction with the oxygen meter used on June 17, 2003. All three lakes sampled on 6/17/03 (Tarleton, Katherine, and Armington) had super-saturated oxygen concentrations (greater than 100% saturated) throughout the water column. We will recheck the dissolved oxygen in each of these lakes in 2004.

As stratified lakes/ponds age, oxygen becomes **depleted** in the hypolimnion (lower layer) by the process of decomposition. Specifically, the loss of oxygen in the hypolimnion results primarily from the process of biological oxidation of organic matter (i.e.; biological organisms using oxygen to break down organic matter), both in the water column and particularly at the bottom of the lake where the water meets the sediment. The **high** oxygen level in the hypolimnion is a sign of the lake's overall good health.

> Table 11: Turbidity

Table 11 (Appendix B) lists the current year and historic data for inlake and tributary turbidity. Turbidity in the water is caused by suspended matter, such as clay, silt, and algae. Water clarity is strongly influenced by turbidity. Please refer to the "Other Monitoring Parameters" section of this report for a more detailed explanation. Turbidity was low at all stations this year.

> Table 12: Bacteria (E.coli)

Table 12 lists the current year data for bacteria (*E.coli*) testing. *E. coli* is a normal bacterium found in the large intestine of humans and other warm-blooded animals. *E.coli* is used as an indicator organism because it is easily cultured and its presence in the water, in defined amounts, indicates that sewage **MAY** be present. If sewage is present in the water, potentially harmful disease-causing organisms may also be present. Please consult the "Other Monitoring Parameters" section of the report for the current state standards for *E. coli* in surface waters. If residents are concerned about sources of bacteria such as failing septic systems, animal waste, or waterfowl waste, it is best to conduct *E. coli* testing when the water table is high, when beach use is heavy, or after rain events.

The *E.coli* concentration was **low** at each of the sites tested this season. We hope this trend continues!

DATA QUALITY ASSURANCE AND CONTROL

Annual Assessment Audit:

During the annual visits to lakes and ponds, the biologist typically conducts a "Sampling Procedures Assessment Audit" for each monitoring group. Specifically, the biologist observes the performance of the monitoring group while sampling and fills out an assessment audit sheet to document the ability of the volunteer monitors to follow the proper field sampling procedures (as outlined in the VLAP Monitor's Field

Manual). This assessment is used to identify any aspects of sample collection in which volunteer monitors are not following the proper procedures, and also provides an opportunity for the biologist to retrain the volunteer monitors as necessary. This will ultimately ensure that the samples that the volunteer monitors collect are truly representative of actual lake and tributary conditions.

This audit was not conducted at your lake in 2003. If it had been, these are the general activities that would have been assessed:

- Finding the deep spot: Please remember to locate the deep spot using three reference points from the shoreline. This method is known as *triangulation*. In addition, depth finders and Global Positioning System (GPS) technology may be used to further pinpoint the location of the deep spot. In addition, please remember to check the depth of the deep spot by *sounding* to ensure that you have actually located the deepest spot. To sound the bottom, simply fill the Kemmerer bottle with lake water from the surface and then lower the bottle into the lake until you feel it touch the bottom. When you have reached the bottom, check the depth on the calibrated chain. You may need to move to another location and repeat this procedure a few times until the deepest spot is located. When you have found the deep spot, please remember to write the depth of the field data sheet. Sounding may disturb the sediment, so please allow the bottom to settle out before collecting the deepest sample.
- Anchoring at deep spot: Please remember to use an anchor with sufficient weight and sufficient amount of rope to prevent the boat from drifting while sampling at the deep spot. It is difficult for the biologist to collect an accurate and representative dissolved oxygen/temperature profile when the boat is drifting. In addition, it is difficult to view the secchi disk and collect samples from the proper depths when the boat is drifting. Depending on the depth of the lake and the wind conditions, it may be necessary to use two anchors!
- ➤ **Hypolimnion (lower layer) sample collection:** Always remember to allow the lake bottom to settle after you sound the bottom before collecting the hypolimnion (lower layer) sample. In addition, please be careful not to hit the lake bottom and make sure that there is no sediment in the Kemmerer bottle before filling the sample bottles. When the lake bottom is disturbed, sediment, which typically contains attached phosphorus, is released into the water column.
- Secchi disk readings: When measuring the transparency at the deep spot, please remember to take at least two secchi disk readings. Since the depth to which the secchi disk can be seen in the water column can vary depending on how windy or sunny it is, and also on the eyesight of the volunteer monitor, it is best to have at least two

people take a reading. In addition, please make sure that the readings are taken on the shady, non-windy side of the boat, between the hours of 10 am and 2 pm.

- ➤ Chlorophyll-a Sampling: When collecting the chlorophyll-a sample using the composite method, please make sure to collect one Kemmerer bottle full of water at each meter from the starting point up to 1 meter from the surface. Specifically, in lakes with one or two thermal layers, begin at 2/3 the total depth and collect water at every meter up to the surface. In lakes with three layers, start at the middle of the middle layer (metalimnion) and collect water at every meter up to the surface.
- ➤ Chlorophyll-a Sampling: When collecting the chlorophyll-a sample using the integrated tube method, please make sure to lower both the weighted end and chain to the appropriate sample depth. Specifically, in lakes with one or two thermal layers, lower the weighted end and chain to 2/3 the total depth. In lakes with three layers, lower the weighted end and the chain to the middle of the middle layer (metalimnion). Crimp the end of the tube tightly and haul the weighted end up by the chain only. Lift the uncrimped end above your head so the open end is always higher than the water level in the tube to ensure that the sample does not escape out of the top of the tube.
- ➤ **Tributary Sampling:** Please do not sample tributaries that are too shallow to collect a "clean" sample (i.e.; free from sediment and organic debris). You may need to move upstream or downstream to collect a "clean" sample. If the stream is not deep enough and the bottom sediment is disturbed while sampling, the phosphorus concentration in the sample will likely be elevated.

In addition, please do not sample tributaries if the bottom sediment has been disturbed as this will likely result in an elevated phosphorus concentration. If you disturb the stream bottom while sampling, please rinse out the bottle and move to an upstream location so that you can sample in an undisturbed area.

Sample Receipt Checklist:

Each time your monitoring group dropped off samples at the laboratory this summer, the laboratory staff completed a sample receipt checklist to assess and document if the volunteer monitors followed proper sampling techniques when collecting the samples. The purpose of the sample receipt checklist is to minimize, and hopefully eliminate, future reoccurrences of improper sampling techniques.

Overall, the sample receipt checklist showed that your monitoring group did an **excellent** job when collecting samples and submitting them to the laboratory this season! Specifically, the members of your monitoring group followed the proper field sampling procedures and there was no need for the laboratory staff to contact your group with questions, and no samples were rejected for analysis. There is just one item to make note of:

Field Data Sheet: Please remember to completely fill in the field data sheet with monitors' names and the date and time samples are collected. In the event that we do discover a problem, we need to know who to contact. And, we like to recognize all the volunteers who helped us throughout the year. We don't want to leave anyone out!

NOTES

Monitor's Note (6/17/03): 1 loon, 1 great blue heron, and 1 possible hawk observed

Biologist's Note (6/17/03): Good water quality!

USEFUL RESOURCES

Best Management Practices to Control Nonpoint Source Pollution: A Guide for Citizens and Town Officials, NHDES-WD 97-8, NHDES Booklet, (603) 271-3503.

Camp Road Maintenance Manual: A Guide for Landowners. KennebecSoil and Water Conservation District, 1992, (207) 287-3901.

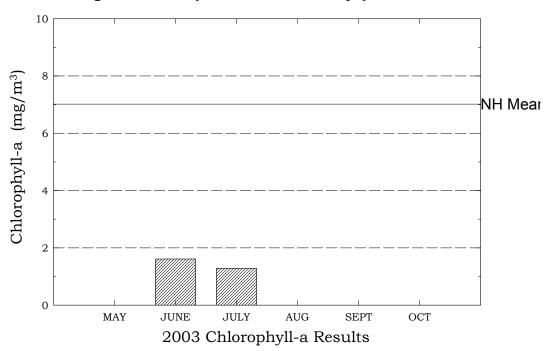
Cyanobacteria in New Hampshire Waters Potential Dangers of Blue-Green Algae Blooms, NHDES Fact Sheet, (603) 271-3505, or www.des.state.nh.us/factsheets/wmb/wmb-10.htm.

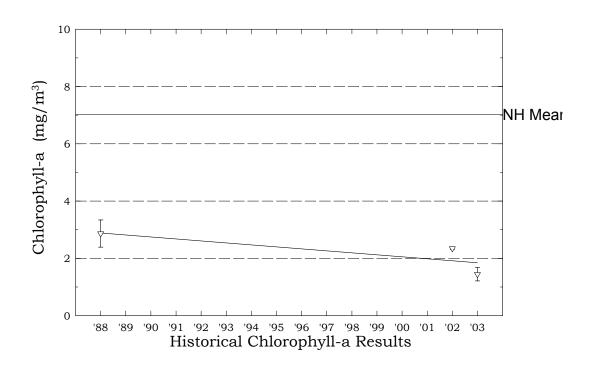
Lake Protection Tips: Some Do's and Don'ts for Maintaining Healthy Lakes, WD-BB-9, NHDES Fact Sheet, (603) 271-3503 or www.des.state.nh.us/factsheets/bb/bb-9.htm.

Management of Canada Geese in Suburban Areas: A Guide to the Basics, Draft Report, NJ Department of Environmental Protection Division of Watershed Management, March 2001, www.state.nj.us/dep/watershedmgt/DOCS/BMP_DOCS/Goosedraft.pdf.

Proper Lawn Care In the Protected Shoreland, The Comprehensive Shoreland Protection Act, WD-SP-2, NHDES Fact Sheet, (603) 271-3503 or www.des.state.nh.us/factsheets/sp/sp-2.htm.

OBSERVATIONS AND RECOMMENDATIONS 2003


Road Salt and Water Quality, WD-WMB-4, NHDES Fact Sheet, (603) 271-3503 or www.des.state.nh.us/factsheets/wmb/wmb-4.htm.


APPENDIX A

GRAPHS

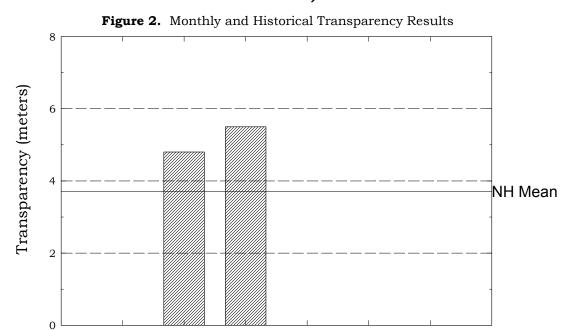
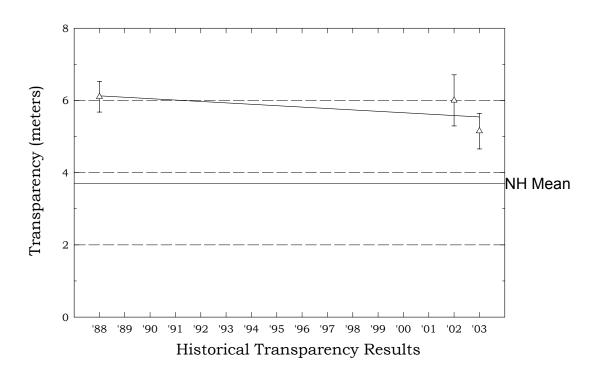

Lake Tarleton, Piermont

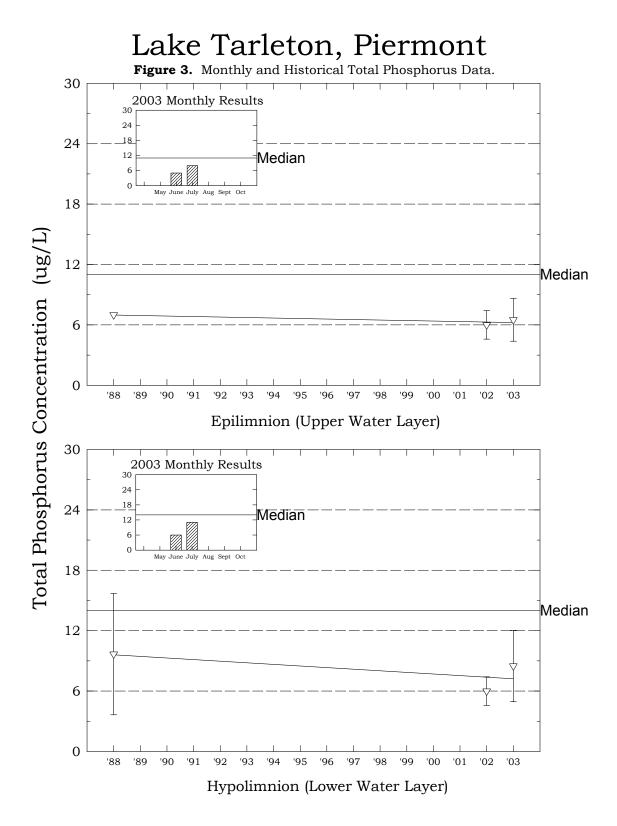
Figure 1. Monthly and Historical Chlorophyll-a Results

Lake Tarleton, Piermont

AUG.

2003 Transparency Results


SEPT.


OCT.

MAY

JUNE

JULY

